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PREFACE

This interim technical report was submitted by the Uni-
versity of Dayton Research Institute, Dayton, Ohio, under
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Wright Aeronautical Laboratories, Wright-Patterson Air Force

Base, Ohio.

This effort was conducted during the period of January
1981 through December 1981. The author, Mr. Russell R. Cervay,
would like to extend special recognition to Mr. Donald W.
Woleslagle and Mr. Richard Marton of the University of Dayton
for the painstaking care and diligent attention they demon-
strated in generating the fatigue crack growth test data
presented herein.
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SECTION I
INTRODUCTION

A simple empirically based mathematical model for constant
amplitude loading fatigue crack growth rate (F'CGR) test data

is very useful for predicting the crack growth rate for a
particular material at a condition where test data are non-
existent. In this manner the necessity for generating data
at a particular unexamined test condition is circumvented.
There are several models already in existence that vary in
their degree of complexity and their degree of success in pre-
dicting test data results. Reference 1 discusses a simple
empirical model for the shift in the linear region of room
temperature FCGR data for aluminum alloy 7010-T73651 with a
change in load ratio, R-ratio (minimum load/maximum load).
The linear data region of FCGR test data is depicted in

Figure 1. The model was based on the Paris equation:

da/dn - CAKm (1)

where da/dn is the crack extension per load cycle, termed the

fatigue crack growth rate, AK is the stress intensity range, and
C and m are material dependent constants. The Paris equation
is applicable to the linear data region only (assuming the log-
stress intensity range, log-AK, is plotted versus the log-
crack growth rate); the threshold and rapid growth rate regions
are not considered in this expression (Figure 1). The Reference 1

model represents the log-Paris coefficient, log-C, as linea'rly
related to the changing R-ratio at room temperature, assuming
a fixed exponent. See Figure 2 . The model was successful

at accurately predicting the best fit straight line to the
linear data region prior to the generation of the data.

This program expands the model developed in Reference 1

to account for variation of the test temperature. To accom-
plish this, three issues will be addressed. At elevated
temperatures does there still exist a linear relationship

I
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between the R-ratio and the log-Paris coefficient? If so, is

there a trend in the lines' slopes with a change in test

temperature? Lastly, with the R-ratio held constant can a

simple mathematical relationship be defined to accommodate the

shift in the data's linear region with a change in test

temperature?

I
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SECTION 11

TEST PROGRAM AND SPECIMENS

The test material was aluminum alloy 2024, half inch

(12.7 mm) thick, bare, rolled plate. It was produced by the
Aluminum Company of America. The material was provided in
the T351 condition which is a solution heat treatment followed
by cold workinq and natural aging. The results of a chemical

constituent analysis is presented as follows.

Chemical Constituent Composition

Cu Mn Fe Si Ti Al

4.3 1.5 0.58 0.20 0.16 <0.03 Balance

Tensile specimens were machined from the test plate and
triplicate tensile tests were performed at the four test
temperature of interest: 720, 2000, 3000, and 400OF (220,
930, 1490, and 204 0 C, respectively) . The specimens were

machined in accord with Figure 3. All tensile specimens were

fabricated with the loading direction parallel to the plate's
longitudinal grain direction. All of these tests were con-
ducted in compliance with the applicable ASTM test standard,
E-8, "Tensile Testing of Metallic Materials."

Two to six constant amplitude loading FCGR tests were
completed at each of 20 different test conditions. The test
conditions were the combination of five different R-ratios:
0.01, 0.1, 0.3, 0.5, and 0.6, and the four different test tem-
peratures: 720, 2000, 300Q, and 4001F (220, 930, 1491, and
204 0C, respectively). All of the FCGR tests were conducted in
accord with ASTM test procedure E647-78, "Constant-Load-Amplitude
Fatigue Crack Growth Rates Above 10-8 m/cycle." Also, all of
these FCGR tests. (1) were conducted in a laboratory air en-
vironment, (2) used a loading frequency equal to 20 Hz, and

(3) used the CT specimen shown in Figure 4 with L-T grain
orientation.

5
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Only the linear region of the crack growth rate data
as represented on a log-stress intensity range versus
log-crack growth rate pair of axes was considered in
this effort; the threshold and rapid crack growth rate region

immediately preceding failure were not considered and are
not presented herein. The maximuzm and minimum crack growth
rates that were used to define the linear region for each of
the 20 test conditions are listed in Table 1; these limits
represent conservative subjective judgementsl generally, the
linear region extends beyond these limits.

For the first 23 tests completed, which represent each
R-ratio in combination with either a 720F (220C) or 200OF

(930C) test temperature, the Paris exponent and coefficient
were allowed to freely vary when calculating the best fitting
linear equation to these individual specimen's data sets.
The average value exponent of these 23 individual specimen data
sets was 3.36 with the maximum value of 3.50 and a ninimum value
of 3.27 or a range of plus or minus 4 percent. Subsequently
in calculating the best fitting equation to the 20 multi-

specimen data sets the Paris exponent was fixed equal to
-=3.36, and only the Paris coefficient, C, was allowed to

freely vary.

Following the calculation of the best fitting *uation
to each of the 20 data sets in accord with the above described
procedure a mathematical model of the shift in the Paris
coefficient for a change in R-ratio and/or test temperature
was formulated. The formulated mathematical model was used
to predict the best fitting equation to a test case set of
data prior to the generation of the test case data. The test
case was arbitrarily selected to be 250OF (1210C)
at a load ratio of 0.35.
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SECTION III
RESULTS AND DISCUSSION

Tensile test results are presented in Table 2. The
material is a moderate strength and ductile aluminum alloy/
heat treatment. For the temperature rise from room temperature
to 4000F (2040C) the average ultimate strength decreases
27.0 percent, whereas, the average yield strength only decreases
10.5 percent. For the same temperature rise there is little
change in the percent elongation at failure, however, there is
a large increase in the percent reduction of area.

The linear region FCGR test results are presented in
Appendix A in Figures A.1 through A.20. Generally, the linear
region shifts down and to the left with an increase in R-ratio
and for this material changes very little with an increase in
temperature. The best fitting equation that was calculated
for each data set with the exponent fixed equal to ma-3.36 is
also listed on each of the 20 figures. From this point on in
the discussion of modeling the FCGR data with the Paris equation,
the stress intensity range, AK, is in KSI/-n, the crack growth
rate, da/dn, is in in./cycle and the temperature is in degrees
Fahrenheit (OF).

Table 3 lists the logarithm of the Paris coefficient,
log-C, for all 20 test conditions of interest. Figure 5 presents
a plot of the loading ratio versus the log-Paris coefficient.
Here if the points for a load ratio equal to 0.01 are excluded
the load ratio versus log-Paris coefficient can fairly well be
represented as a straight line, as was done in Reference 1. This
is true not only of the room temperature tests but is equally
applicable to the elevated temperature data. The lowest load
ratio Paris coefficients do not coordinate well with the
coefficient associated with larger R-ratios. Similarly, in
Reference 1 the Paris coefficient of some data for load ratios
less than or equal to zero was not linearly related to those
coefficients for the same material generated at higher R-ratios.

10
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TABLE 2

ALUMINUM ALLOY 2024-T351 TENSILE TEST RESULTS

Test Ultimate 0.2% Yield Elongation in 0.5 in.. Reduction
Temparature Strength Strength (12.7 mnm) G.L. of Area
OF (OC)- KSI (Npa) I

72 (22) 66.1(455.7) 50.4(347.5) 27.6 24.8
66.2(456.4) 50.8(350.3) 26.3 21.7
65.3(450.2) 53.2(366.8) 23.6 25.5

Avg. 65.9(454.1) 51.5(354.9) 25.B 24.0

200 (93) 62.2(428.9) 49.4(340.6) 23.3 26.1
62.4(430.2) 49.1(338.5) 26.8 20.7
62.9(433.7) 49.3(339.9) 26.7 25.7

Avg. 62.5(430.9) 49.3(339.7) 25.6 26.8

300 (149) 56.1(386.8) 45.9(316.5) 27.0 31.8
55.7(384.0) 47.5(327.5) 30.0 34.8
56.9(392.3) 46.3(319.2) 29.3 33.0

Avg. 56.2(387.7) 46.6(321.1) 28.8 33.2

400 (204) 47.5(327.5) 45.8(315.8) 22.1 42.0

47.7(328.9) 45.7(315.1) 23.8 43.0
49.2(339.2) 46.7(322.0) 23.0 44.0

Avg. 48.1(331.9) 46.1(317.6) 23.0 43.0

11
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TABLE 3

LOG-PARIS COEFFICIENT FOR A12024-T351

Tes t
Temperature R- 0.01 0.1 :L3 0.5 0.6

OF (CC)

72 (22) -8.613 -8.447 -8.350 -8.277 -8.231

200 (93) -8.565 -8.409 -8.336 -8.257 -8.212

300 (149) -8.500 -8.402 -8.323 -8.257 -8.178
I

400 (204) -8.513 -8.356 -8.275 -8.205 -8.145

12
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In general, there is very little shift in the data points

in going from the 72 0 F (220C) to the 400OF (204 0 C) data.

This is a very desirable material characteristic but presents

a hurdle in this effort to characterize a material's response

to a change in temperature.

In Figure 5 if lines were drawn through the data points

for each temperature, excluding all of the log-Paris coefficients

for an R-ratio equal to 0.01, the slopes of the four lines (not

shown) would be 0.417, 0.392, 0.424, and 0.418 for the four

test temperatures: 720 F (22*C), 200OF (93 0 C), 300OF (149 0 C),

and 400OF (204 0 C), respectively. Since (1) there is no trend

in the slopes, and (2) the slope for 72*F (221C) and 400OF (2040C),

the minimum and maximum test temperatures, are practically

identical, the slope was assumed to be constant over the tem-

perature range and is approximately equal to the average of

the four values E a 0.413. Assuming the slope of the line

remains constant will accommodate considerable simplification

of the mathematical model for the FCGR test data since

log-C = constant + b.R

is equally applicable for any temperature. Also the Paris

exponent, m, is assumed to be constant, m=3.36, over the entire

R-ratio, temperature, and crack growth rate range (Table 1)
included in this program, which represents another convenient

simplification.

Figure 6 presents the log-Paris coefficients listed

in Table 3 along with the temperatures. For all five R-ratios

there is very little change in crack growth data (Figures A.4
to A.20) or in log-C with an increase in temperature. Here

again it can be seen that all of the log-C values associated
with a loading ratio equal to 0.01 plot disproportionately low.

A linear relationship can quite adequately represent the

change in log-C with test temperature for all five of the R-ratios.

14
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If the best fit lines (not shown) were drawn for each R-ratio,

the slope of each line would be: 0.00031, 0.00026, 0.00021,

* 0.00019, and 0.00027 for loading ratios equal to 0.01, 0.1, 0.3,

0.5, and 0.6, respectively (since the plot for an R-ratio equal

to 0.01 is disproportionally low these log-coefficients data

points will again be disregarded). The average slope for the

four lines associated with the R-ratios larger than 0.01 is

d=0.00023. This average slope is represented as only an

approximate value for the change in log-C with a change in

temperature. Assuming the slope of the lines remains constant

represents another convenient simplification of the mathematical

model for the FCGR data. Consequently,

log-C % constant + U'T

is equally applicable over the R-ratio range from 0.1 to 0.6.

It has been assumed that the trivariant data (R-ratio,

test temperature, and log-C) can be graphically represented by

a series of parallel straight lines. Reference 2 presents

a least squares method for calculating the coefficients for

trivariant linearly related data in the general. form

z = a0 + alx + a 2 Y (2)

for a given set of n data points where

N1 - N2a2 =4 2 2- 2[n Ex -(Exi) 21 [n Eyi-(Eyj)l-[n Exiyi-(zxj) ((y) j 2  (3)

where

N1  [n Zxi-(Exi) 2[n Zyizi.-(Zyi) (zi)] (4)

N2  [n Z-xiyi-(Zxi) (Zyi) I[n Fxizi-(Fxi) ( E zi)] (5)

16

• • • - ... . , .d ' ..



[n Zxizi-(Zxi) (Zzi)] - a2[n Exiyi-(Exi)(Zyi)]
a, 2 (6)n x _ (Zxi) 2

Zzi - a2EYi - alTxi
and a 0  n (7)

for i 1,2,3...n

For this particular application

x - R-ratio = R

y - Test temperature (OF) = T

and z = log-C.

Since the data for an R-ratio equal to 0.01 appears

to be disproportionately low, only the 16 data points (n=16) for
R-ratios greater than or equal to 0.1 were used as input to the

above equations. The results of the calculations were

a0 - -8.503

al - 0.412

and a 2 = 0.00023

or log C = -8.503 + 0.412R + 0.00023T (8)

The two coefficients calculated in this manner are

practically identical to the average values for the lines'

slopes (Figures 3 and 4) presented as approximations earlier.
Taking the antilogarithm of equation (8) yields a general

expression for the Paris coefficient., C,

C = 1 0 (-8.503+0.412R+0.00023T) (9)

Therefore, by substituting equation (9) and the average

exponent, mi=3.36, into equation (1) the final mathematical

model for the test material is:

da (-8. 5 0 3 +0.412 R+0. 0 0 0 2 3 T) AK3 . 3 6  (10)

for 720 < T < 400OF and 0.1 < R < 0.6.

17



A test case to verify the general Paris expression (10) was
arbitrarily selected at an R-ratio equal to 0.35 and a test
temperature of 250IF (121'C). Putting the values of these two
parameters into equation (10) a predictive equation for the
data is obtained:

da = 10(-8.503+0.412,0.35+0.00023-250) K 3.36
dn

da = (-8. 302) 3 36 (11)
dn

da 4.99 10 9 AK3 "3 6 for R=0.35 and T=2500 F (121 0 C)
dn

Two specimens were tested for the test case. Test results
are presented in Figure 7 along with the best fitting line
calculated with the exponent fixed equal to 3.36. (The best
fitting equation calculated for this same data set- with both
the exponent and coefficient free to vary has the same exponent,
3.36, and a coefficient equal to 4.76.-9 rather than

4.75.10 .) Also presented in Figure 7 is the predictive
equation (11). The two lines overlap. They were started and
ended at different stress intensity ranges to facilitate visual
detection of two different lines as opposed to one broad line.

Agreement between the predictive and best fitting equation for
the test case data set is excellent.

18
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SECTION IV

CONCLUSIONS

The following conclusions are applicable for the test

conditions used throughout this report; i.e.; 72 0 F (221C) <

Temperature < 400 0 F (204*C), 0.1 < R-ratio < 0.6, and a loading

frequency equal to 20 Hz.

1. The log-Paris coefficient can be modeled as a linear

relationship of the R-ratio and the test temperature

assuming all other test parameters remain constant.

2. In a log-stress intensity range versus the log-crack

growth rate plot the linear region shifts down and to

the left with increasing R-ratio.

3. For a constant loading frequency and load ratio

there is very little acceleration in the crack growth

rate in aluminum alloy 2024-T351 with an increase in

test temperature.

4. The crack growth model derived herein netted a good

fitting predictive equation to the linear region of a

test case data set.

20

- I.



REFERENCES

1. Cervay, Russell R., "An Empirical Model for Loading
Ratio Effect on Fatigue Crack Growth Rate Data,"
University of Dayton Research Institute, Technical
Report AFWAL-TR-81-4140, November 1981.

2. Program Manual ST1 Statistical Library, Texas Instrument
Incorporated, Dallas, Texas, 1975.

1 3

2211

.......................................................A



APPENDIX A

22



CMPa eqr+, (m) 3
.1I 1.

* Al 2-TO51

ri

X-

, 1i-5 .

00

LN

X

0

a - do/ci- L 8I-N A X.
L
0 R- LEI1-I

Temp- M2 0 Dog. F

frog. - 20. 0 Hu

lob air

Orienaien- a.-T)

j INS

oIeo ntomlt~y ram!ge, do 1-6 K, rKS I oqr-+(. Im.)3
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Figure A.5. R=0.6, 72*F (22*C) FCGR Test Results. *
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Figure A.9. R=0.5# 200OF (930C) FCGR Test Results.
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Figure A.10. R=0.6, 200OF (930C) FCGR Test Results.
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Figure A.11. R=0.01, 300OF (1490C) FCGR Test Results.
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Figure A.12. R=0.1, 300OF (149 0 C) FCGR Test Results.
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Figure A.11. R-0.01, 3000F (149 0C) FCGR Test Results.
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Figure A.14, RmO.5, 300*F (1490C) FCGR Test Results.
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Figure A.15. R-0.6, 300OF` (1490C) FCGR Test Results.
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Figure A.16. R-0O.01, 4000 F (204 0C) FCGR Test Results.
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Figure A.17. R-0.1, 400OF (204 0 C) FCGR Test Results.
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Figure A.18. R-0.3, 400OF (2040C) FCGR Test Results.
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Figure A.19. R-0.5, 400OF (204 0 C) FCGR Test Results.
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Figure A.20. R=0.6, 4000F (204 0 C) FCGR Test Results.
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